Longest increasing subsequence

What is an increasing subsequence?

Given a sequence a subsequence is a ordered subset of the subsequence...
Probably.
E.G given [5, 12, 6, $2,1,9,1]$

The following are subsequences: $[12],[6,1],[5,12,1,1]$ and $[5,12,6,2]$
The following are not $[1,6]$ and $[12,5,1]$
A increasing subsequence is a subsequence that is increasing*.

I'll be working with strictly increasing

How to find an increasing subsequence?

Brute Force of course!

[5, 1, 3, 2]
Is just:

- [5], [1], [3], [2]
- $[5,1],[5,3],[5,2],[1,3],[1,2],[3,2]$
- $[5,1,3],[5,1,2],[5,3,2],[1,3,2]$
- [5, 1, 3, 2]

Brute Force of course!

- [5, 1, 3, 2]
- Removing all subsequences that aren't increasing results in:
- [5], [1], [3], [2]
- [1, 3], [1, 2]
- [1, 3, 2]

And it is clear to see that $[1,3,2]$ is the largest increasing subsequence And it is only $\mathrm{O}\left(2^{\mathrm{n}}\right)$

End

But wait

What if we have more than 25 elements?
Then consider the following algorithm which operates in $\mathrm{O}\left(\mathrm{n}^{2}\right)$ Let our sequence of numbers be stored in an array called ' X '. We will proceed with dynamic programming.

Let mem[j] store the index k of the smallest $X[k]$ such that there is an increasing subsequence ending at k.
Let prev[j] store the predecessor of $\mathrm{X}[\mathrm{k}]$ in the longest increasing subsequence of size j ending at $\mathrm{X}[\mathrm{k}]$
mem[j]: is the index k with smallest $\mathrm{X}[\mathrm{k}]$ such that is an increasing subsequence of length j ending at k
$\operatorname{prev}[\mathrm{k}]$: is the predecessor of $\mathrm{X}[\mathrm{k}]$

Notice if we find some $\mathbf{X}[\mathrm{i}]$ < $\mathbf{X}[\operatorname{mem}[j]]$, then $\operatorname{mem}[j]=\mathbf{i}$, as $X[i]$ is smaller

Also prev[i] = mem[j - 1]
We will now iterate over the entire list X and update mem and prev
mem[j]: is the index k with smallest $X[k]$ such that is an increasing subsequence of length j ending at k $\operatorname{prev}[k]$: is the predecessor of $X[k]$
$X=[0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15]$
mem $=[0,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1]$
prev $=[-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1]$
mem[j]: is the index k with smallest $X[k]$ such that is an increasing subsequence of length j ending at k $\operatorname{prev}[k]$: is the predecessor of $X[k]$
$X=[0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15]$
mem $=[0,0,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1]$
prev $=[0,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1]$

0
mem[j]: is the index k with smallest $X[k]$ such that is an increasing subsequence of length j ending at k $\operatorname{prev}[k]$: is the predecessor of $X[k]$
$X=[0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15]$
mem $=[0,0,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1]$
prev $=[0,0,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1]$

0
0, 8
mem[j]: is the index k with smallest $X[k]$ such that is an increasing subsequence of length j ending at k $\operatorname{prev}[k]$: is the predecessor of $X[k]$
$X=[0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15]$
mem $=[0,0,2,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1]$
prev $=[0,0,0,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1]$

0
0, 8 0,4
mem[j]: is the index k with smallest $X[k]$ such that is an increasing subsequence of length j ending at k $\operatorname{prev}[k]$: is the predecessor of $X[k]$
$X=[0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15]$
mem $=[0,0,2,3,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1]$
prev $=[0,0,0,2,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1]$

0
0,4
$0,4,12$
mem[j]: is the index k with smallest $X[k]$ such that is an increasing subsequence of length j ending at k $\operatorname{prev}[k]$: is the predecessor of $X[k]$
$X=[0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15]$
mem $=[0,0,4,3,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1]$
prev $=[0,0,0,2,0,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1]$

0
0,4 0, 2
$0,4,12$
mem[j]: is the index k with smallest $X[k]$ such that is an increasing subsequence of length j ending at k $\operatorname{prev}[k]$: is the predecessor of $X[k]$
$X=[0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15]$
mem $=[0,0,4,3,5,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1]$
prev $=[0,0,0,2,0,4,-1,-1,-1,-1,-1,-1,-1,-1,-1]$

0
0, 2
$0,4,120,4,10$
mem[j]: is the index k with smallest $X[k]$ such that is an increasing subsequence of length j ending at k $\operatorname{prev}[k]$: is the predecessor of $X[k]$
$X=[0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15]$
mem $=[0,0,4,3,6,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1]$
prev $=[0,0,0,2,0,4,4,-1,-1,-1,-1,-1,-1,-1,-1]$

0
0, 2
$0,4,100,2,6$
mem[j]: is the index k with smallest $X[k]$ such that is an increasing subsequence of length j ending at k $\operatorname{prev}[k]$: is the predecessor of $X[k]$
$X=[0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15]$
mem $=[0,0,4,3,6,7,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1]$
prev $=[0,0,0,2,0,4,4,6,-1,-1,-1,-1,-1,-1,-1]$

0
0, 2
0, 2, 6
$0,2,6,14$
mem[j]: is the index k with smallest $X[k]$ such that is an increasing subsequence of length j ending at k $\operatorname{prev}[k]$: is the predecessor of $X[k]$
$X=[0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15]$
mem $=[0,0,8,3,6,7,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1]$
prev $=[0,0,0,2,0,4,4,6,0,-1,-1,-1,-1,-1,-1]$

0
0,20,1
$0,2,6$
$0,2,6,14$
mem[j]: is the index k with smallest $X[k]$ such that is an increasing subsequence of length j ending at k $\operatorname{prev}[k]$: is the predecessor of $X[k]$
$X=[0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15]$
mem $=[0,0,8,3,6,9,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1]$
prev $=[0,0,0,2,0,4,4,6,0,6,-1,-1,-1,-1,-1]$

0
0, 1
0, 2, 6
$0,2,6,140,2,6,9$
mem[j]: is the index k with smallest $X[k]$ such that is an increasing subsequence of length j ending at k $\operatorname{prev}[k]$: is the predecessor of $X[k]$
$X=[0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15]$
mem $=[0,0,8,10,6,9,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1]$
prev $=[0,0,0,2,0,4,4,6,0,6,8,-1,-1,-1,-1]$

0
0, 1
$0,2,60,1,5$
$0,2,6,9$
mem[j]: is the index k with smallest $X[k]$ such that is an increasing subsequence of length j ending at k $\operatorname{prev}[k]$: is the predecessor of $X[k]$
$X=[0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15]$
mem $=[0,0,8,10,6,9,11,-1,-1,-1,-1,-1,-1,-1,-1,-1]$
prev $=[0,0,0,2,0,4,4,6,0,6,8,9,-1,-1,-1]$

0
0, 1
$0,1,5$
$0,2,6,9$
$0,2,6,9,13$
mem[j]: is the index k with smallest $X[k]$ such that is an increasing subsequence of length j ending at k $\operatorname{prev}[k]$: is the predecessor of $X[k]$
$X=[0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15]$
mem $=[0,0,8,12,6,9,11,-1,-1,-1,-1,-1,-1,-1,-1,-1]$
$\operatorname{prev}=[0,0,0,2,0,4,4,6,0,6,8,9,8,-1,-1]$

0
0, 1
$0,1,50,1,3$
$0,2,6,9$
$0,2,6,9,13$
mem[j]: is the index k with smallest $X[k]$ such that is an increasing subsequence of length j ending at k $\operatorname{prev}[k]$: is the predecessor of $X[k]$
$X=[0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15]$
mem $=[0,0,8,12,6,9,13,-1,-1,-1,-1,-1,-1,-1,-1,-1]$
prev $=[0,0,0,2,0,4,4,6,0,6,8,9,8,9,-1]$

0
0, 1
$0,1,3$
$0,2,6,9$
$0,2,6,9,130,2,6,9,11$
mem[j]: is the index k with smallest $X[k]$ such that is an increasing subsequence of length j ending at k $\operatorname{prev}[k]$: is the predecessor of $X[k]$
$X=[0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15]$
mem $=[0,0,8,12,6,14,13,-1,-1,-1,-1,-1,-1,-1,-1,-1]$
prev $=[0,0,0,2,0,4,4,6,0,6,8,9,8,9,12]$

0
0, 1
$0,1,3$
$0,2,6,90,2,6,7$
0, 2, 6, 9, 11
mem[j]: is the index k with smallest $X[k]$ such that is an increasing subsequence of length j ending at k $\operatorname{prev}[k]$: is the predecessor of $X[k]$
$X=[0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15]$
mem $=[0,0,8,12,6,14,13,15,-1,-1,-1,-1,-1,-1,-1,-1]$
prev $=[0,0,0,2,0,4,4,6,0,6,8,9,8,9,12,13]$

0
0, 1
$0,1,3$
$0,2,6,7$
$0,2,6,9,11$
$0,2,6,9,11,15$
mem[j]: is the index k with smallest $X[k]$ such that is an increasing subsequence of length j ending at k $\operatorname{prev}[k]$: is the predecessor of $X[k]$
$X=[0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15]$
mem $=[0,0,8,12,6,14,13,15,-1,-1,-1,-1,-1,-1,-1,-1]$
prev $=[0,0,0,2,0,4,4,6,0,6,8,9,8,9,12,13]$

0
0, 1
$0,1,3$
$0,2,6,7$
$0,2,6,9,11$
$0,2,6,9,11,15<-$ The answer !

Notice when we look for where our $\mathrm{X}[\mathrm{i}]$ will go instead of running a for loop over mem, we can binary search
This reduces the time complexity from $\mathrm{O}\left(\mathrm{n}^{2}\right)$ to $\mathrm{O}(\mathrm{nlog} \mathrm{n}$)

$\mathrm{n}=\operatorname{len}(\mathrm{X})$

mem $=$ [0]
prev = []
for i in range (n)
mem. append (-1)
prev.append (-1)

$1 i=0$

\# li keeps track of the length of our LIS
for i in range (n):
hi $=1 i+1$
$10=0$
while hi - 1 > lo:
mid $=$ (lo + hi)//2
if $\mathrm{X}[$ mem[mid]] $<\mathrm{X}[i]$
\# if you want to find the LIS with
\#increasing instead of strictly increasing
\# change the above to $X[m e m[m i d]]-1<X[i]$
$10=\operatorname{mid}$
else:
hi $=$ mid
\#When the binary search ends 'lo' points 1
\#to the left of the element we want
prev[i] $=$ mem[lo]
mem[lo +1$]=1$
\# Checks and increases li if our LIS increased
if $10+1>1 i$:
li $+=1$
s = []
\# gives the LIS in the form of 's'|
for i in range (li):

s.append (0)

$\mathrm{k}=$ mem[li]
for i in range ($1 \mathrm{i}-1,-1,-1$)
$s[i]=X[k]$
$\mathrm{k}=$ prev $[\mathrm{k}]$
print (s)

